Epoch 1/100
511/512 [============================>.] - ETA: 0s - loss: 2.2732 - sparse_categorical_accuracy: 0.4428Epoch 00000: val_loss improved from inf to 1.87402, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 197s - loss: 2.2725 - sparse_categorical_accuracy: 0.4430 - val_loss: 1.8740 - val_sparse_categorical_accuracy: 0.5170
Epoch 2/100
511/512 [============================>.] - ETA: 0s - loss: 1.5320 - sparse_categorical_accuracy: 0.5838Epoch 00001: val_loss improved from 1.87402 to 1.79164, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 197s - loss: 1.5328 - sparse_categorical_accuracy: 0.5836 - val_loss: 1.7916 - val_sparse_categorical_accuracy: 0.5389
Epoch 3/100
511/512 [============================>.] - ETA: 0s - loss: 1.4810 - sparse_categorical_accuracy: 0.5889Epoch 00002: val_loss improved from 1.79164 to 1.64881, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.4801 - sparse_categorical_accuracy: 0.5891 - val_loss: 1.6488 - val_sparse_categorical_accuracy: 0.5672
Epoch 4/100
511/512 [============================>.] - ETA: 0s - loss: 1.3776 - sparse_categorical_accuracy: 0.6123Epoch 00003: val_loss improved from 1.64881 to 1.62763, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 197s - loss: 1.3770 - sparse_categorical_accuracy: 0.6124 - val_loss: 1.6276 - val_sparse_categorical_accuracy: 0.5633
Epoch 5/100
511/512 [============================>.] - ETA: 0s - loss: 1.3651 - sparse_categorical_accuracy: 0.6179Epoch 00004: val_loss improved from 1.62763 to 1.56387, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.3649 - sparse_categorical_accuracy: 0.6179 - val_loss: 1.5639 - val_sparse_categorical_accuracy: 0.5798
Epoch 6/100
511/512 [============================>.] - ETA: 0s - loss: 1.3395 - sparse_categorical_accuracy: 0.6206Epoch 00005: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.3388 - sparse_categorical_accuracy: 0.6207 - val_loss: 1.5934 - val_sparse_categorical_accuracy: 0.5698
Epoch 7/100
511/512 [============================>.] - ETA: 0s - loss: 1.3422 - sparse_categorical_accuracy: 0.6198Epoch 00006: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.3420 - sparse_categorical_accuracy: 0.6197 - val_loss: 1.6155 - val_sparse_categorical_accuracy: 0.5745
Epoch 8/100
511/512 [============================>.] - ETA: 0s - loss: 1.3393 - sparse_categorical_accuracy: 0.6186Epoch 00007: val_loss improved from 1.56387 to 1.46804, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 198s - loss: 1.3395 - sparse_categorical_accuracy: 0.6186 - val_loss: 1.4680 - val_sparse_categorical_accuracy: 0.5898
Epoch 9/100
511/512 [============================>.] - ETA: 0s - loss: 1.3073 - sparse_categorical_accuracy: 0.6266Epoch 00008: val_loss did not improve
512/512 [==============================] - 202s - loss: 1.3079 - sparse_categorical_accuracy: 0.6264 - val_loss: 1.4898 - val_sparse_categorical_accuracy: 0.6072
Epoch 10/100
511/512 [============================>.] - ETA: 0s - loss: 1.2888 - sparse_categorical_accuracy: 0.6312Epoch 00009: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.2886 - sparse_categorical_accuracy: 0.6313 - val_loss: 1.4973 - val_sparse_categorical_accuracy: 0.6061
Epoch 11/100
511/512 [============================>.] - ETA: 0s - loss: 1.2445 - sparse_categorical_accuracy: 0.6434Epoch 00010: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.2444 - sparse_categorical_accuracy: 0.6433 - val_loss: 1.5481 - val_sparse_categorical_accuracy: 0.5956
Epoch 12/100
511/512 [============================>.] - ETA: 0s - loss: 1.2436 - sparse_categorical_accuracy: 0.6458Epoch 00011: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.2445 - sparse_categorical_accuracy: 0.6456 - val_loss: 1.5897 - val_sparse_categorical_accuracy: 0.5906
Epoch 13/100
511/512 [============================>.] - ETA: 0s - loss: 1.2382 - sparse_categorical_accuracy: 0.6456Epoch 00012: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.2380 - sparse_categorical_accuracy: 0.6455 - val_loss: 1.5488 - val_sparse_categorical_accuracy: 0.5962
Epoch 14/100
511/512 [============================>.] - ETA: 0s - loss: 1.2331 - sparse_categorical_accuracy: 0.6472Epoch 00013: val_loss did not improve
Epoch 00013: reducing learning rate to 0.00010000000474974513.
512/512 [==============================] - 204s - loss: 1.2330 - sparse_categorical_accuracy: 0.6472 - val_loss: 1.4856 - val_sparse_categorical_accuracy: 0.6018
Epoch 15/100
511/512 [============================>.] - ETA: 0s - loss: 1.2147 - sparse_categorical_accuracy: 0.6527Epoch 00014: val_loss improved from 1.46804 to 1.40302, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 203s - loss: 1.2143 - sparse_categorical_accuracy: 0.6528 - val_loss: 1.4030 - val_sparse_categorical_accuracy: 0.6226
Epoch 16/100
511/512 [============================>.] - ETA: 0s - loss: 1.2207 - sparse_categorical_accuracy: 0.6526Epoch 00015: val_loss improved from 1.40302 to 1.38009, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 203s - loss: 1.2211 - sparse_categorical_accuracy: 0.6524 - val_loss: 1.3801 - val_sparse_categorical_accuracy: 0.6166
Epoch 17/100
511/512 [============================>.] - ETA: 0s - loss: 1.1942 - sparse_categorical_accuracy: 0.6559Epoch 00016: val_loss improved from 1.38009 to 1.34212, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 203s - loss: 1.1948 - sparse_categorical_accuracy: 0.6557 - val_loss: 1.3421 - val_sparse_categorical_accuracy: 0.6339
Epoch 18/100
511/512 [============================>.] - ETA: 0s - loss: 1.2306 - sparse_categorical_accuracy: 0.6448Epoch 00017: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.2303 - sparse_categorical_accuracy: 0.6448 - val_loss: 1.3774 - val_sparse_categorical_accuracy: 0.6322
Epoch 19/100
511/512 [============================>.] - ETA: 0s - loss: 1.1876 - sparse_categorical_accuracy: 0.6553Epoch 00018: val_loss did not improve
512/512 [==============================] - 205s - loss: 1.1878 - sparse_categorical_accuracy: 0.6553 - val_loss: 1.4078 - val_sparse_categorical_accuracy: 0.6111
Epoch 20/100
511/512 [============================>.] - ETA: 0s - loss: 1.2100 - sparse_categorical_accuracy: 0.6510Epoch 00019: val_loss did not improve
512/512 [==============================] - 205s - loss: 1.2103 - sparse_categorical_accuracy: 0.6509 - val_loss: 1.4424 - val_sparse_categorical_accuracy: 0.6053
Epoch 21/100
511/512 [============================>.] - ETA: 0s - loss: 1.2000 - sparse_categorical_accuracy: 0.6548Epoch 00020: val_loss did not improve
512/512 [==============================] - 205s - loss: 1.2001 - sparse_categorical_accuracy: 0.6548 - val_loss: 1.5043 - val_sparse_categorical_accuracy: 0.6069
Epoch 22/100
511/512 [============================>.] - ETA: 0s - loss: 1.2099 - sparse_categorical_accuracy: 0.6525Epoch 00021: val_loss did not improve
512/512 [==============================] - 205s - loss: 1.2097 - sparse_categorical_accuracy: 0.6525 - val_loss: 1.3510 - val_sparse_categorical_accuracy: 0.6262
Epoch 23/100
511/512 [============================>.] - ETA: 0s - loss: 1.1905 - sparse_categorical_accuracy: 0.6555Epoch 00022: val_loss did not improve
Epoch 00022: reducing learning rate to 1.0000000474974514e-05.
512/512 [==============================] - 205s - loss: 1.1907 - sparse_categorical_accuracy: 0.6554 - val_loss: 1.4026 - val_sparse_categorical_accuracy: 0.6223
Epoch 24/100
511/512 [============================>.] - ETA: 0s - loss: 1.1946 - sparse_categorical_accuracy: 0.6547Epoch 00023: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.1945 - sparse_categorical_accuracy: 0.6547 - val_loss: 1.3585 - val_sparse_categorical_accuracy: 0.6325
Epoch 25/100
511/512 [============================>.] - ETA: 0s - loss: 1.2222 - sparse_categorical_accuracy: 0.6469 ETA: 10s - loss: 1.221Epoch 00024: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.2222 - sparse_categorical_accuracy: 0.6469 - val_loss: 1.5299 - val_sparse_categorical_accuracy: 0.6066
Epoch 26/100
511/512 [============================>.] - ETA: 0s - loss: 1.1967 - sparse_categorical_accuracy: 0.6559Epoch 00025: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.1977 - sparse_categorical_accuracy: 0.6558 - val_loss: 1.3459 - val_sparse_categorical_accuracy: 0.6418
Epoch 27/100
511/512 [============================>.] - ETA: 0s - loss: 1.2198 - sparse_categorical_accuracy: 0.6528Epoch 00026: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.2201 - sparse_categorical_accuracy: 0.6526 - val_loss: 1.3855 - val_sparse_categorical_accuracy: 0.6220
Epoch 28/100
511/512 [============================>.] - ETA: 0s - loss: 1.2129 - sparse_categorical_accuracy: 0.6488Epoch 00027: val_loss did not improve
Epoch 00027: reducing learning rate to 1.0000000656873453e-06.
512/512 [==============================] - 204s - loss: 1.2121 - sparse_categorical_accuracy: 0.6489 - val_loss: 1.3767 - val_sparse_categorical_accuracy: 0.6273
Epoch 29/100
511/512 [============================>.] - ETA: 0s - loss: 1.2090 - sparse_categorical_accuracy: 0.6520Epoch 00028: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.2086 - sparse_categorical_accuracy: 0.6522 - val_loss: 1.4131 - val_sparse_categorical_accuracy: 0.6112
Epoch 30/100
511/512 [============================>.] - ETA: 0s - loss: 1.1854 - sparse_categorical_accuracy: 0.6585Epoch 00029: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.1855 - sparse_categorical_accuracy: 0.6584 - val_loss: 1.4447 - val_sparse_categorical_accuracy: 0.6199
Epoch 31/100
511/512 [============================>.] - ETA: 0s - loss: 1.1973 - sparse_categorical_accuracy: 0.6518Epoch 00030: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.1977 - sparse_categorical_accuracy: 0.6517 - val_loss: 1.4080 - val_sparse_categorical_accuracy: 0.6175
Epoch 32/100
511/512 [============================>.] - ETA: 0s - loss: 1.1917 - sparse_categorical_accuracy: 0.6510Epoch 00031: val_loss improved from 1.34212 to 1.33430, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 204s - loss: 1.1917 - sparse_categorical_accuracy: 0.6511 - val_loss: 1.3343 - val_sparse_categorical_accuracy: 0.6367
Epoch 33/100
511/512 [============================>.] - ETA: 0s - loss: 1.1942 - sparse_categorical_accuracy: 0.6527Epoch 00032: val_loss did not improve
512/512 [==============================] - 204s - loss: 1.1940 - sparse_categorical_accuracy: 0.6528 - val_loss: 1.3475 - val_sparse_categorical_accuracy: 0.6312
Epoch 34/100
511/512 [============================>.] - ETA: 0s - loss: 1.2036 - sparse_categorical_accuracy: 0.6540Epoch 00033: val_loss did not improve
512/512 [==============================] - 205s - loss: 1.2035 - sparse_categorical_accuracy: 0.6540 - val_loss: 1.4254 - val_sparse_categorical_accuracy: 0.6215
Epoch 35/100
511/512 [============================>.] - ETA: 0s - loss: 1.1946 - sparse_categorical_accuracy: 0.6515Epoch 00034: val_loss did not improve
512/512 [==============================] - 203s - loss: 1.1948 - sparse_categorical_accuracy: 0.6515 - val_loss: 1.4776 - val_sparse_categorical_accuracy: 0.5996
Epoch 36/100
511/512 [============================>.] - ETA: 0s - loss: 1.1822 - sparse_categorical_accuracy: 0.6582Epoch 00035: val_loss did not improve
512/512 [==============================] - 205s - loss: 1.1819 - sparse_categorical_accuracy: 0.6583 - val_loss: 1.3706 - val_sparse_categorical_accuracy: 0.6280
Epoch 37/100
511/512 [============================>.] - ETA: 0s - loss: 1.1899 - sparse_categorical_accuracy: 0.6533Epoch 00036: val_loss did not improve
512/512 [==============================] - 198s - loss: 1.1900 - sparse_categorical_accuracy: 0.6533 - val_loss: 1.4072 - val_sparse_categorical_accuracy: 0.6092
Epoch 38/100
511/512 [============================>.] - ETA: 0s - loss: 1.1924 - sparse_categorical_accuracy: 0.6565Epoch 00037: val_loss improved from 1.33430 to 1.33189, saving model to /home/bmcfee/working/chords/model_simple_ckpt.pkl
512/512 [==============================] - 196s - loss: 1.1922 - sparse_categorical_accuracy: 0.6566 - val_loss: 1.3319 - val_sparse_categorical_accuracy: 0.6353
Epoch 39/100
511/512 [============================>.] - ETA: 0s - loss: 1.1902 - sparse_categorical_accuracy: 0.6544Epoch 00038: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1905 - sparse_categorical_accuracy: 0.6542 - val_loss: 1.4282 - val_sparse_categorical_accuracy: 0.6131
Epoch 40/100
511/512 [============================>.] - ETA: 0s - loss: 1.1865 - sparse_categorical_accuracy: 0.6548Epoch 00039: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1864 - sparse_categorical_accuracy: 0.6548 - val_loss: 1.3920 - val_sparse_categorical_accuracy: 0.6238
Epoch 41/100
511/512 [============================>.] - ETA: 0s - loss: 1.1910 - sparse_categorical_accuracy: 0.6541Epoch 00040: val_loss did not improve
512/512 [==============================] - 195s - loss: 1.1907 - sparse_categorical_accuracy: 0.6543 - val_loss: 1.4106 - val_sparse_categorical_accuracy: 0.6186
Epoch 42/100
511/512 [============================>.] - ETA: 0s - loss: 1.2025 - sparse_categorical_accuracy: 0.6520Epoch 00041: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.2027 - sparse_categorical_accuracy: 0.6520 - val_loss: 1.4036 - val_sparse_categorical_accuracy: 0.6315
Epoch 43/100
511/512 [============================>.] - ETA: 0s - loss: 1.2049 - sparse_categorical_accuracy: 0.6489Epoch 00044: val_loss did not improve
512/512 [==============================] - 195s - loss: 1.2047 - sparse_categorical_accuracy: 0.6490 - val_loss: 1.4590 - val_sparse_categorical_accuracy: 0.6125
Epoch 46/100
511/512 [============================>.] - ETA: 0s - loss: 1.1868 - sparse_categorical_accuracy: 0.6547Epoch 00045: val_loss did not improve
512/512 [==============================] - 196s - loss: 1.1864 - sparse_categorical_accuracy: 0.6549 - val_loss: 1.3915 - val_sparse_categorical_accuracy: 0.6169
Epoch 47/100
511/512 [============================>.] - ETA: 0s - loss: 1.2239 - sparse_categorical_accuracy: 0.6461Epoch 00046: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.2240 - sparse_categorical_accuracy: 0.6461 - val_loss: 1.4135 - val_sparse_categorical_accuracy: 0.6273
Epoch 48/100
511/512 [============================>.] - ETA: 0s - loss: 1.2218 - sparse_categorical_accuracy: 0.6455Epoch 00047: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.2217 - sparse_categorical_accuracy: 0.6455 - val_loss: 1.3927 - val_sparse_categorical_accuracy: 0.6255
Epoch 49/100
511/512 [============================>.] - ETA: 0s - loss: 1.2060 - sparse_categorical_accuracy: 0.6557Epoch 00048: val_loss did not improve
Epoch 00048: reducing learning rate to 1.000000082740371e-08.
512/512 [==============================] - 197s - loss: 1.2063 - sparse_categorical_accuracy: 0.6556 - val_loss: 1.3505 - val_sparse_categorical_accuracy: 0.6291
Epoch 50/100
511/512 [============================>.] - ETA: 0s - loss: 1.1848 - sparse_categorical_accuracy: 0.6566Epoch 00049: val_loss did not improve
512/512 [==============================] - 198s - loss: 1.1841 - sparse_categorical_accuracy: 0.6568 - val_loss: 1.3940 - val_sparse_categorical_accuracy: 0.6271
Epoch 51/100
511/512 [============================>.] - ETA: 0s - loss: 1.1916 - sparse_categorical_accuracy: 0.6561Epoch 00050: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.1917 - sparse_categorical_accuracy: 0.6561 - val_loss: 1.3978 - val_sparse_categorical_accuracy: 0.6262
Epoch 52/100
511/512 [============================>.] - ETA: 0s - loss: 1.1752 - sparse_categorical_accuracy: 0.6595Epoch 00051: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.1748 - sparse_categorical_accuracy: 0.6596 - val_loss: 1.3867 - val_sparse_categorical_accuracy: 0.6162
Epoch 53/100
511/512 [============================>.] - ETA: 0s - loss: 1.1758 - sparse_categorical_accuracy: 0.6567Epoch 00052: val_loss did not improve
512/512 [==============================] - 197s - loss: 1.1758 - sparse_categorical_accuracy: 0.6567 - val_loss: 1.3768 - val_sparse_categorical_accuracy: 0.6177
Epoch 54/100
511/512 [============================>.] - ETA: 0s - loss: 1.1870 - sparse_categorical_accuracy: 0.6539Epoch 00053: val_loss did not improve
Epoch 00053: reducing learning rate to 1.000000082740371e-09.
512/512 [==============================] - 197s - loss: 1.1874 - sparse_categorical_accuracy: 0.6539 - val_loss: 1.4012 - val_sparse_categorical_accuracy: 0.6157